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ASYMPTOTIC BEHAVIOR OF THE CONDUCTING PROPERTIES

OF HIGH-CONTRAST MEDIA

UDC 519.6:517.58A. G. Kolpakov

The asymptotic-shielding effect and the asymptotic behavior of the conductivity of a medium con-
taining closely spaced, perfectly conducting inclusions. It is proved that in the presence of asymptotic
shielding for pairs of adjacent particles, the original continuous problem can be approximated by a
finite-dimensional problem.
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Introduction. We consider the three-dimensional boundary-value problem for the Laplace equations in
a domain with perfectly conducting closely packed inclusions. Existing approaches [1–3] are inapplicable to this
to problem. The history of the problem goes back to the problem of the electric field in a system of periodic
bodies [4]. Later, Keller [5] showed that the formulas from [4] are inapplicable in the case of a small distance δ
between the bodies and obtained new formulas for small δ. Using a linear trial function in the channel between
particles, Keller [5] obtained a divergent integral. In [5], the limit of integration was arbitrary and the question
of the divergence of the integral remained open. In the two-dimensional case, the corresponding integral usually
converges, which made it possible to substantiate a network model for a two-dimensional composite filled with
disks [3]. Tamm [6] described the shielding effect for the approach of bodies. In the present paper, it is proved that
the Maxwell–Keller problem [4, 5], Tamm shielding [6], and the possibility of finite-dimensional approximation of
the continuous problem in a domain with perfectly conducting inclusions are related to one another. It is found
that in the three-dimensional case, the asymptotic shielding effect does not always occur and its physical nature
differs from that indicated in [6].

1. Formulation of the Problem. Let nonintersecting and nonconvex particles Di (i = 1, 2, . . . , N) with
piecewise-smooth boundaries be distributed in a domain P = [−L,L]3 (Fig. 1). We denote the domain outside the
particles by Q = P \ {∪Di}. Let us consider the problem

∆ϕ = 0 in the domain Q; (1.1)

ϕ = ti on Di, i = 1, 2, . . . , N ; (1.2)∫
∂Di

∂ϕ

∂n
dx = 0, i = 1, 2, . . . , N ; (1.3)

ϕ(x, y,±1) = ±1; (1.4)

∂ϕ

∂n
(±L, y, z) = 0,

∂ϕ

∂n
(x,±L, z) = 0. (1.5)

Here x = (x, y, z), ∆ is a Laplace operator, and n is the normal to the boundary of the domain Q. The unknowns
are the function ϕ in the domain Q and its values {ti} on the particles Di (i = 1, 2, . . . , N).
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Fig. 1. Composite and Voronoi cells.

In analyzing problem (1.1)–(1.5), we shall use primarily the terminology of electrostatics. The exception is
the term flux, which will be defined as ∇ϕ. In electrostatics, flux is the electric-field strength with the minus sign.
If (1.1)–(1.5) is treated as a problem of electrical and thermal conduction or diffusion, flux is an electric current or
a heat or mass flux. In (1.1)–(1.5), the dielectric constant (resistivity, heat conductivity or diffusion) is equal to
unity.

Condition (1.3) implies that the total flux in a particle is equal to zero, condition (1.4) implies that the
potentials ±1 are applied on the sides z = ±, respectively (Fig. 1), and condition (1.5) implies the absence of flux
through the vertical faces of the domain P .

Problem (1.1)–(1.5) is equivalent to the minimization problem

I(ϕ) =
1
2

∫
Q

|∇ϕ|2 dx → min (1.6)

on the set of functions

Vp = {ϕ(x) ∈ H1(Q): ϕ(x) = ti on Di, ϕ(x, y,±1) = ±1}. (1.7)

Definition 1. The effective conductivity of an inhomogeneous medium is the quantity

a =
1

4L2

∫
z=1

∂ϕ

∂n
dx

(normal flux through the boundary z = 1 referred to the surface area of the boundary).
Let us express the effective conductivity in terms of the functional I(ϕ). The following equality [3] holds:

4L2 =
∫

z=1

∂ϕ

∂n
dx =

1
2

∫
Q

|∇ϕ|2 dx. (1.8)

The quantity A = 4L2a is called the effective conductivity of the sample. By virtue of (1.8), we have

A =
1
2

∫
Q

|∇ϕ|2 dx. (1.9)

We investigate the effective conductivity of the sample A (and, hence, the effective conductivity a) for small
distances between the particles.

2. General Upper- and Lower-Bound Estimates. Upper-Bound Estimate. Relations (1.6) and (1.7)
imply the estimate

A 6
1
2

∫
Q

|∇ϕ|2 dx ∀ϕ ∈ Vp. (2.1)
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Lower-Bound Estimate. We introduce the space of functions

Wp =
{

v = (v1(x), v2(x), v3(x)) ∈ L2(Q): v(x,±L, z)n = v(x, y,±L)n = 0,

∫
∂Di

vn dx = 0, i = 1, 2, . . . , N
}
.

Following [3], we obtain the lower-bound estimate

A > −
∫
Q

1
2

v2 dx +
∫

z=±1

ϕ0vn dx ∀v ∈Wp (div v = 0). (2.2)

Here and below, the function ϕ0(z) [such that ϕ0(±1) = ±1] is used for abbreviated notation and appears only in
integrals over the faces z = ±1.

For the solution ϕ of problem (1.6), (1.7), the equality I(ϕ) = J(v) holds, where v = ∇ϕ and J(v)

= −
∫
Q

1
2

v2 dx +
∫

z=±1

ϕ0vn dx. This equality follows from the definition of the functionals I(ϕ), J(v), Green’s

formulas, and boundary conditions (1.3) and (1.5).
3. Formal Network Model. Solutions of the problem of the form (1.1), (1.2) for a pair of particles

are known from electrostatics (see, for example, [7]). An analysis of these solutions shows that in many cases the
approach of particles gives rise to strong fluxes between them; in this case, the energy is concentrated in the small
domain (channel) between the particles. In view of this, we construct a network analogue of problem (1.1)–(1.5)
assuming that the particles interact only with the nearest neighbors and the flux pij between the pair of adjacent
particles (ith and jth) is equal to C(2)

ij (ti − tj), where C(2)
ij is the pair electric capacity of these particles in R3 [7].

We obtain a network (graph) {xi, ti, C
(2)
ij ; i, j = 1, 2, . . . , N}, where xi are the network nodes (particles), ti are the

potentials of the particles, and C(2)
ij are the characteristics of the network edges. The fluxes pij (charges, following

the electrostatic interpretation of the problem) in the networks should satisfy Kirchhoff’s equation for the internal
nodes of the network (denoted below by I) and the boundary conditions for the particles lying on the boundaries
S± corresponding to z = ±1:

N∑
j=1

C
(2)
ij (ti − tj) = 0, i ∈ I, ti = ±1, i ∈ S±. (3.1)

We define the notion of adjacent particles using the Voronoi–Delaunay method [8]. The Voronoi cell corre-
sponding to a particle is a set of points that are closer to the given particle than to the remaining particles. For
simply connected convex particles with piecewise-smooth boundaries, the Voronoi cells are determined uniquely.
Adjacent particles are particle that lie in adjacent Voronoi cells (see Fig. 1). Accordingly, in (3.1), the summation
should be performed only over the particles adjacent to the given particles (or one should assume that C(2)

ij = 0 if
the ith and jth particles are not adjacent). Some of the particles can be in contact with the boundaries z = ±1. On
such boundaries, the Dirichlet condition is imposed. Some of the particles lie near the boundaries z = ±1, and their
Voronoi cells have a part in common with the boundary S± and split S± into polyhedra (Fig. 1). We shall call these
polyhedra pseudoparticles and specify potentials 1 or −1 on them. Via pseudoparticles we take into account the
flux in the system boundary–near-boundary particle, which generates a third boundary condition. A pseudoparticle
can be treated as a sphere of radius R = ∞. The Delaunay graph (a graph with the edges connecting adjacent
particles) is connected [8].

All particles (initial and pseudoparticles) that intersect the boundary z = 1 will be denoted by S+, all
particles that intersect the boundary z = −1 by S−, and the remaining (i.e., internal) particles by I. The following
statement can be proved (see [3]).

Lemma 1. The solution of problem (3.1) satisfies the condition −1 6 ti 6 1 (i = 1, 2, . . . , N).
Using the solution of problem (3.1), it is possible to construct bilateral estimates that, under certain condi-

tions, are joined for close particle packing. We begin with obtaining refined [compared to (2.1) and (2.2)] estimates
that are valid for any particle packing.
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Fig. 2. Equipotential channel for a particle–particle pair (a) and a particle-pseudoparticle pair
(boundary) (b).

4. Refined Lower-Bound Estimate. The estimates are refined using special trial functions. In (2.2), the
trial function v should satisfy the conditions

div v = 0 in the field of Q; (4.1)∫
∂Di

vn dx = 0, i = 1, 2, . . . , N ; (4.2)

vn = 0 on surfaces y = ±L, z = ±L.

To construct the trial function, we consider two adjacent particles Di and Dj (Fig. 2a). The choice of the
direction of the coordinate axes is of no significance. The domain between the particles Di and Dj (Fig. 2a and b)
will be called the channel between the particles Di and Dj and denoted by Sij . In this study, we use two types of
channels, which will be described below.

Equipotential Channels and Estimate of the Volume Integral in (2.2). A particle can have several neighbors.
We choose the width of the channel Sij (Fig. 2a) such that the channel is not intersected by other channels and, at
the same time, its width S is different from zero.

We construct the channel Sij and the trial function v in it based on the solution of the problem on the
electric field in R3 produced by two particles Di and Dj with potentials ti and tj , respectively:

∆ϕ = 0 in the domain R3 \ (Di ∪Dj),

ϕ = ti on Di, ϕ = tj on Dj , |ϕ(x)| → 0 at |x| → ∞.
(4.3)

The construction is performed in terms of the equipotential surfaces and lines of force. The surfaces ϕ(x)
= const are called equipotential surfaces and the normals to them form the lines of force. Outside Di ∪ Dj , the
equipotential surfaces and the lines of force form a system of orthogonal coordinates.

For two particles, the structure of the equipotential surfaces and the lines of force is known and has the form
shown in Fig. 2a. The lines of force issuing from the vicinity Si of the pole of the sphere Di are terminated in the
vicinity Sj of the pole of the sphere Dj . By the poles is meant the nearest points of the particles. The domain Sij

filled with the lines of force passing from Si to Sj and the domains Si and Sj have dimensions of the same order
of magnitude. We denote by δij the distance between the particles Di and Dj . For small δij (tending to zero)
and small (but fixed) dimensions of the domains Si and Sj the domain Sij forms an isolated channel between the
particles Di and Dj . Channels of such form will be called equipotential channels.

Let us consider the function

v =

{
∇ϕ, x ∈ Sij ,

0, x ∈ R3 \ Sij \ (Di ∪Dj).
(4.4)
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Proposition. For function (4.4), the equality div v = 0 in Rn(Di ∪Dj) (n = 2, 3) holds.
We note that for an arbitrary (not equipotential) channel in (4.4), this statement is incorrect. For the

function (4.4),
vn = ∇ϕn = 0 on Γ+ (4.5)

(Γ+ is the lateral inner boundary of the channel Sij). Equality (4.5) explains the choice of the channel Sij . The
boundary of the equipotential channel is formed of lines of force; therefore, there is no flux through the boundary
and for function (4.4), the condition of zero divergence over the entire domain R3 \ (Di ∪ Dj) is satisfied. If the
electrostatic solution is used as a trial function, the problem of divergence of the integral does not arise.

Next, it is necessary to satisfy condition (4.2). By virtue of the choice of the function ϕ and the channel Sij

[see (4.5)], for the function v in (4.4) we have∫
Si

∇ϕn dx = −
∫
Sj

∇ϕn dx. (4.6)

Multiplying the equality ∆ϕ = 0 from (4.3) by ϕ and integrating the result by parts in Sij taking into
account the remaining conditions, from (4.3) we obtain

−
∫

Sij

|∇ϕ|2 dx = ti

∫
Si

∇ϕn dx + tj

∫
Sj

∇ϕn dx.

From this, using (4.6) we obtain
∫

Sij

|∇ϕ|2 dx = (ti − tj)
∫
Si

∇ϕn dx. Then,

∫
Si

∇ϕn dx =
1

ti − tj

∫
Sij

|∇ϕ|2 dx. (4.7)

Let us denote by ϕ±1(x) the solution of problem (4.3) for ti = 1/2 and tj = −1/2. Then, ∇ϕ = (ti− tj)ϕ±1

and relation (4.7) becomes ∫
Si

∇ϕn dx = (ti − tj)
∫

Sij

|∇ϕ±1|2 dx. (4.8)

Definition 2. The quantity CSij =
∫

Sij

|∇ϕ±1|2 dx =
∫
Sj

∇ϕ±1n dx will be called the capacity of the sets Si

and Sj (or Di and Dj) in the set Sij .
The capacity depends on the particle shape and the distance between the particles.

We calculated the flux
∫
Si

∇ϕn dx into the particle Di through one channel Sij . Since the particle Di can

have several neighbors, the integral in (4.2) is the total flux over all channels (which, by construction, do not
intersect each other) that lead to Di. To construct a trial function, it is necessary to specify the fluxes in each
channel in such a manner that the flux balance holds immediately for all particles. For this, we use the solution
of the network problem (3.1) — the quantities pij that satisfy the global balance condition. Condition (4.2) is

satisfied if the flux in each channel Sij satisfies the equality
∫
Si

∇ϕn dx = pij . We assume that in the channel Sij ,

the function ϕ has the form
ϕ = λijϕ

±1. (4.9)

From (4.9) it follows that in order that relation (4.8) be valid, λij should satisfy the condition∫
Si

λij∇ϕ±1n dx = λij

∫
Si

∇ϕ±1n dx = pij

(Si is the vicinity of the pole of the particle Di) or

λijC
Sij = pij . (4.10)
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Bearing in mind that pij = C
(2)
ij (ti − tj) (C(2)

ij is the capacity of the pair of bodies Di and Dj in R3), from
(4.8) and (4.10) we obtain

λij =
C

(2)
ij

CSij
(ti − tj). (4.11)

If the trial function in the channel Sij has the form (4.9), condition (4.2) is satisfied for it. The satisfaction
of (4.1) was proved earlier (it does not depend on the multiplication of the function by an arbitrary number).

We can now calculate the integral in (2.2) for the trial function (4.9). Let us calculate the value of the
integral in one channel. For function (4.9) which satisfies (4.1) and (4.2), we have∫

Sij

|λij∇ϕ±1|2 dx = λ2
ij

∫
Sij

|∇ϕ±1|2 dx = λ2
ijC

Sij . (4.12)

In view of (4.11), the value of (4.12) (integral over one channel Sij) is equal to

λ2
ijC

Sij =
(C(2)

ij

CSij

)2

CSij (ti − tj)2 =
(C(2)

ij )2

CSij
(ti − tj)2. (4.13)

Since the channels do not intersect each other, the integral −
∫
Q

1
2

v2 dx is equal to the sum over all channels.

Taking into account (4.12) and (4.13), we obtain

−
∫
Q

1
2

v2 dx = −1
2

∑
Sij

(C(2)
ij )2

CSij
(ti − tj)2 = −1

4

N∑
i,j=1

(C(2)
ij )2

CSij
(ti − tj)2.

The index Sij in the summation sign indicates that the summation is performed over the channels (one channel
refers to one term). Performing the summation over the subscripts i, j = 1, 2, . . . , N , we pass twice through each
channel and, as a result, obtain a multiplier of 1/4.

Estimate of the Boundary Integral in (2.2). For a particle adjacent to the boundary z = 1, the channel Sij

has the shape shown in Fig. 2b. The pseudoparticle Di is plane. The field in the channel is calculated as in the
previous case (one only needs to set Ri = 0). The boundary integral from (2.2) over Si is equal to pij , and the
integral over the entire boundary z = 1 is equal to

∑
i∈S+

∑
j

pij =
∑

i∈S+

∑
j

C
(2)
ij (1− tj), where the subscript i ∈ S+

corresponds to the particles (true particles and pseudoparticles) lying on the boundary z = 1. We denote this sum
by P+. Similarly, P− =

∑
i∈S−

∑
j

C
(2)
ij (−1 − tj). Thus, both integrals in (2.2) are calculated for the trial function

(4.3) we can write the estimate implied by (2.2):

A >
1
4

N∑
i,j=1

(C(2)
ij )2

CSij
(ti − tj)2 + P+ + P−. (4.14)

5. Refined Upper-Bound Estimate. The general upper-bound estimate has the form (2.1). Let us
refine it.

Cylindrical Channel and Constructing a Trial Function. We consider a cylindrical channel Rij (Fig. 3) and
define in it a trial function ϕ = (ti− tj)ϕ±1 (restriction of the electrostatic solutions to the channel Rij). Of interest

is the integral
∫
Q

|∇ϕ|2 dx. For ϕ = (ti − tj)ϕ±1, in the channel Rij we have∫
Rij

|∇ϕ|2 dx = (ti − tj)2
∫

Rij

|∇ϕ±1|2 dx.

Constructing a Trial Function outside the Channel. We consider a particle with channels exiting Rij . The
diameter of the channels Rij is fixed. With approach of the channels (δ → 0), the distances between the particles Di

and the distances between the channels Rij are separated from zero uniformly over δ → 0. We construct a vicinity
of the particles Di and channels Rij of width h which does not depend on δ → 0. We denote this vicinity by Ph. As
δ → 0, the domain Ph passes to its limiting (at δ = 0) position. In the domain Ph, we construct a function ψδ(x)
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Fig. 3. Cylindrical channel and the vicinity of Ph.

that takes specified values on the boundaries of the particles Di and Dj and the boundary of the channel Rij and
vanishes on the boundary γ. The question consists of the possibility of constructing such a function subject to the
additional condition that its derivatives are bounded uniformly over δ. This question is solved positively by virtue
of the results of [9, Chapter 15].

The function

ϕ(x) =


ϕ±1 in Rij ,

ψδ in Ph,

0 outside of Ph

(5.1)

belongs to the set Vp and can be used as a trial function in (2.1). For (5.1), we write∫
Q

|∇ϕ|2 dx =
1
2

N∑
i,j=1

(ti − tj)2CRij +
∫
Ph

|∇ψδ(x)|2 dx, (5.2)

where CRij =
∫

Rij

|∇ϕ±1|2 dx. In this case, the integral in (5.2) satisfies the inequality∫
Ph

|∇ψδ(x)|2 dx 6 C <∞, (5.3)

where C does not depend on δ.
6. Asymptotic Shielding. Approximation of the Continuous Problem by a Discrete Problem

for Shielding Particles. According to [6], the essence of the asymptotic shielding effect lies in the absence of the
effect of other bodies on the mutual capacity of two closely spaced bodies. In the presence of the shielding effect
for all pairs of adjacent particles, the obtained refined bilateral estimates for the effective conductivity A are joined
in the asymptotic (for δ → 0) sense and the main element A is expressed in terms of the solution of the network
problem (3.1).

The notion of neighbors was defined above. We introduce the packing parameter δ = max δij (δij is the
distance between the ith and jth particles; the maximum is taken only over adjacent particles). Pseudoparticles
also are included in the consideration. The condition δ → 0 implies that the particles approach each other and the
near-boundary particles approach the boundary. This situation can be called close particle packing.

According to estimates (4.14), (5.2), and (5.3), we have

A > −1
4

N∑
i,j=1

(C(2)
ij )2

CSij
(ti − tj)2 + P+ + P−, A 6

1
4

N∑
i,j=1

CRij (ti − tj)2 +
∫
Ph

|∇ψδ|2 dx. (6.1)

Lemma 2. The equality

1
2

N∑
i,j=1

C
(2)
ij (ti − tj)2 = P+ + P− (6.2)

holds, where {ti} is the solution of problem (3.1).
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The proof of Lemma 2 is similar to that given in [3].
By virtue of (6.1) and (6.2), we have the estimate

1
2

N∑
i,j=1

C
(2)
ij

[
− 1

2
(C(2)

ij )2

CSij
+ 1

]
(ti − tj)2 6 A 6

1
4

N∑
i,j=1

CSij (ti − tj)2 +
∫
Ph

|∇ψδ|2 dx. (6.3)

Let there be two particles Di and Dj in R3 separated by a distance δ. We distinguish the channel K that
connects the particle. By the channel K is meant the channel Sij or Rij .

Lemma 3 (on shielding). As δ → 0 , for the particles described above:

1) the energy outside the channel is
∫

R3\(K∪Di∪Dj)

|∇ϕ±1|2 dx 6 C <∞, where C does not depend on δ;

2) if for any adjacent particles Di and Dj, the condition
∫

R3\(Di∪Dj)

|∇ϕ±1|2 dx →∞ is satisfied for δ → 0,

the capacities C(2)
ij , CSij , and CRij are asymptotically equivalent: C(2)

ij ∼ CSij ∼ CRij .
Proof. We write f ∼ g for δ →0 if f/g → 1 as δ → 0. The position of the particles Di and Dj is not fixed,

which creates some technical difficulties in obtaining estimates. However, the fact that the particles move to the
known limiting position (contact position) reduces these difficulties considerably.

Estimate of the Energy outside the Sphere |x| = R. We enclose two approaching particles Di and Dj in a
sphere of radius R and show that outside the sphere the energy is bounded uniformly over δ. On the sphere |x| = R,
where |ϕ±1| 6 1 by virtue of the maximum principle irrespective of the position of the particles Di and Dj . We
write Poisson’s integral [10] in the form

ϕ±1 =
1

4πR

∫
|x|=R

R2 − |x|2

|x− y|2
u(y) dy, (6.4)

where u(y) = ϕ±1(y) is the value of the function ϕ±1(y) on the sphere |x| = R. From (6.4) it follows that
|ϕ±1| 6 C/|x| [10], where C does not depend on the positions of Di and Dj during their approach (Di and Dj are
in a sphere |x| 6 R).

Differentiating (6.4) (for |x| > R, it is possible to differentiate under the integral sign), we find that as
ρ→∞, ∫

R6|x|

|∇ϕ±1|2 dx 6 C1 <∞,

where C1 does not depend on δ.
Estimate of the Energy inside the Sphere |x| = R. Let us consider the set M = {|x| 6 R}\ (Di∪Dj ∪K) —

a sphere {|x| 6 R} without the particles Di and Dj and the channel K. For the domain M , we can use the
results of [9, Chapter 15], by virtue of which the modulus |∇ϕ±1(x)| is bounded by a quantity that does not
depend on the positions of Di and Dj during their approach. Hence, the integral of |∇ϕ±1(x)|2 over M = {|x| 6
R} \ (Di ∪Dj ∪ Rij) is bounded uniformly over δ. Part 1 of Lemma 3 (on shielding) is proved. Let us now prove
Part 2.

The asymptotic equivalence C(2)
ij ∼ CRij follows from the equality

C
(2)
ij = CRij +

∫
R3\(Rij∪Di∪Dj)

|∇ϕ±1|2 dx 6 C, (6.5)

which follows from the definition of the quantities C(2)
ij and CRij [as integrals over R3 \ (Di ∪Dj) and over Rij ] and

the finiteness of the integral over R3 \ (Rij ∪Di ∪Dj) (according to Part 1 of Lemma 3).

If
∫

R3\(Di∪Dj)

|∇ϕ±1|2 dx → ∞ as δ → 0, then CRij → ∞ as δ → 0 because
∫

R3\Rij

|∇ϕ±1|2 dx is uniformly

bounded over δ (see Part 1 of Lemma 3). Dividing (6.5) by CRij , we obtain
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C
(2)
ij

CRij
= 1 +

1
CRij

∫
R3\Rij

|∇ϕ±1|2 dx → 1 at δ → 0.

Let us prove, that C(2)
ij ∼ CSij . The channel Sij is not cylindrical. Its width is separated from zero

for at all positions of Di and Dj as δ → 0. We circumscribe a cylinder S into Sij and calculate the capacity
CS =

∫
S
|∇ϕ±1|2 dx with respect to this cylinder S. Since the capacities CS , CSij , and C

(2)
ij are obtained by

integration of the function |∇ϕ±1|2 > 0 over the domains S ⊂ Sij ⊂ R3 \ (Di ∪Dj), the following relations hold:

CS 6 CSij 6 C
(2)
ij , (6.6)

For the cylindrical channel S, the statement of Part 2 of Lemma 3 was proved above. By virtue of this, CS ∼ C
(2)
ij ,

whence in view of (6.6), we infer that CSij ∼ C
(2)
ij .

To continue the analysis of the problem, it is necessary to address the physics of the phenomenon considered.
As δ → 0, the pair capacities of the particles can have different orders in δ (this depends on the particle shape).
We require that the particles be of the same sort, i.e., we require that as δ → 0, the pair capacities of the particles
have the same order f(δ): mf(δ) 6 C

(2)
ij 6 Mf(δ), where m and M do not depend on δ.

Let us define the energy in the discrete network as E =
1
4

N∑
i,j=1

C
(2)
ij (ti − tj)2, where {ti} is a solution of the

discrete network problem (3.1).
Lemma 4. If as δ → 0, the capacities C(2)

ij have the same order f(δ), then E has the same order f(δ).
The proof is similar to that given in [3].
Theorem 1. Let the capacities C(2)

ij have the same order f(δ) → ∞ as δ → 0 for all adjacent particles.
Then, the effective conductivity A→∞ as δ → 0. For δ → 0, the main element A is expressed in terms of {ti} —
a solution of the discrete network problem (3.1):

A ∼ 1
4

N∑
i,j=1

C
(2)
ij (ti − tj)2. (6.7)

Proof. By virtue of (6.3), we have

1
2

N∑
i,j=1

C
(2)
ij

[
− 1

2
(C(2)

ij )2

CSij
+ 1

]
(ti − tj)2 6 A 6

1
4

N∑
i,j=1

CRij (ti − tj)2 +
∫
Ph

|∇ψδ|2 dx, (6.8)

where {ti} is a solution of the discrete network problem that does not depend on δ;
∫
Ph

|∇ψδ|2 dx < C <∞, where

C does not depend on δ [see (5.3)]. We let δ to zero. By the condition of Theorem 1, the condition of Part 2 of
Lemma 3 is satisfied, hence,

C
(2)
ij /C

Sij → 1, CRij/CRij → 1. (6.9)

By virtue of the first relation in (6.9), we have −(1/2)C(2)
ij /C

Sij +1 = (1/2)C(2)
ij +O(δ) [O(δ) → 0 as δ → 0].

From the second relation in (6.9) it follows that CRij = C
(2)
ij + C

(2)
ij O(δ). Then, (6.9) is written as

1
4

N∑
i,j=1

C
(2)
ij (ti − tj)2 + 2 max ‖C(2)

ij ‖O(δ) 6 A

6
1
4

N∑
i,j=1

C
(2)
ij (ti − tj)2 + 2 max ‖C(2)

ij ‖O(δ) +
∫
Ph

|∇ψδ|2 dx. (6.10)

Here we used the inequality |ti| 6 1 (see Lemma 1).
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Dividing both parts (6.10) by E =
1
4

N∑
i,j=1

C
(2)
ij (ti − tj)2, we obtain

1 +
2‖C(2)

ij ‖
E

O(δ) 6
A

E
6 1 +

2‖C(2)
ij ‖
E

O(δ) +
1
E

∫
Ph

|∇ψδ| dx. (6.11)

By the condition of the theorem, C(2)
ij have the same order f(δ) → ∞ as δ → 0. By virtue of Lemma 4,

E →∞ as δ → 0 and the integral
∫
Ph

|∇ψδ|2 dx is bounded uniformly over δ. Then, the right and left parts of (6.11)

tend to unity as δ → 0, whence follows (6.7).
7. Discussion of the Results. The region of application of the above results is fairly wide because of the

extensive use of network models [11] and high-contrast composites [2, 3]. We give the basic conclusions from the
mathematical results obtained above.

Asymptotic Shielding Effect. Tamm explains the asymptotic shielding effect (without using the term asymp-
totic) in such a manner: “. . . if the conductor dimensions are larger than the distance between the conductors . . .
the space between the capacitor plates is considerably (if not completely) protected by the plates from the effect
of the external field” [6, p. 53]. In the three-dimensional case, the shielding effect may not occur. The condition
of its occurrence is described in the shielding lemma. The physics of the phenomenon is the following. In the case
of unbounded increase in the capacity with approach of the particles, the energy channeling effect is observed (by
virtue of Part 1 of Lemma 3, the increasing energy is concentrated in the narrow channel between the particles).
The flux in the channel is protected from the effect of the external field by its large magnitude and not by the
bodies (the situation more resembles the stress concentration effect [12] than the classical shielding case, where the
bodies are protected by the shield).

Effective Conductivity of High-Contrast Composites and Asymptotic Shielding Effect. In developing tech-
nologies involving high-contrast composites, one usually reasons as follows: the particles are highly conducting and
the distance between them is small, hence, one might expect a large total flux through the composite. This reasoning
is generally incorrect since the effective conductivity is determined by pair capacities rather than by contrast. To
raise the effective conductivity, it is necessary to increase the pair capacities of the particles which are determined
primarily by the particle geometry.

Effect of the Dimension of the Problem. The above results are true for problems of any dimension. The
dimension influence only the pair capacities, whose difference can lead to a difference in the properties of the
composites depending on the dimension of the problem.

Network Models. A finite-dimensional (network) approximation for continuous high-contrast problems is
possible in the presence of the asymptotic shielding effect for pairs of particles. In the absence of this effect, the use
of network models is generally incorrect. The presence of the shielding effect is verified by calculations of the pair
capacities of the particles.

Order of the Pair Conductivities and Particle Shape. In the problem in question there is the order of the
pair capacities f(δ) present. In particular, the pair capacities define the effective conductivity of a composite. We
gives values of the pair capacities in Rn (n = 2, 3) for some characteristic cases.

We first consider three-dimensional pairs.
1. Sphere–sphere. The pair capacity of two spheres of radius R separated by a distance δ is equal to

4π ln (δ/R) →∞ as δ → 0 [5, 10].
2. Plane–cone. For the formation of a plane–cone pair (polyhedral angle), f(δ) is bounded as δ → 0. The

shielding condition is not satisfied.
3. For a polyhedron–polyhedron pair in general position, f(δ) is bounded as δ → 0. A face–face pair (plate

capacitor) can form, for which f(δ) ∼ 1/δ →∞ as δ → 0. For random particle packing, the occurrence of face–face
pairs is improbable.

4. A pair of particles whose shape in the region of contact (a is the characteristic dimension of the domain)
is given by z = ±r4/2, where r =

√
x2 + y2. This function is more suitable for modeling relatively flat particle
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fragments. The capacity C(2) =

a∫
0

r dr

δ + r4
=

1√
δ

arctan
a2

δ
∼ π

δ
→ ∞ as δ → 0; for δ → 0, C(2) does not depend

on a.
Let us now consider two-dimensional pairs.
5. Disk–disk. The pair capacity of two disks R separated by a distance δ is equal to π

√
R/δ → ∞ as

δ → 0 [7]. From this directly follow the results of [3].
6. Half-plane–corner. The pair capacity of a half-plane and an angle separated by a distance δ has order

ln δ → ∞ as δ → 0. We note that the integral

∞∫
0

dx

δ + |x|
diverges and this the case cannot be investigated by the

methods of [3].
Let us compare the pair capacity of a disk–disk pair (denoted by the subscript d–d) and a half-plane–corner

pair (the subscript h–c). In the two-dimensional case, C(2)

d–d/C
(2)

h–c
∼= δ−1/2/ ln δ → ∞ as δ → 0, i.e., the disks

are more effective fillers for increasing the conducting properties of the composites than polyhedra (which form a
half-plane–corner pair in the region of approach). In the three-dimensional case, the difference is even larger (cf.
the sphere–sphere and plane–cone cases). We note that the particles having the shape of polyhedra are widely used
because of the low cost of their production by crushing (usually by grinding).

Notion of Capacity. In the present paper, the problem was considered from the viewpoint of electrostatics
[6, 7]. Problem (1.1)–(1.5) describes the processes of electrical and thermal conduction and diffusion, for which the
notion of capacity, as a rule, is not used.
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